UNCLASSIFIED v - Ny
a L / AR-006-430 -
/ }775
r' 7 U ’
/ 50/1/‘.'/ /V/Q\D n\ T
R N AU 'C;}L ~)7‘1/‘\ \\
Ren. Ty Iye, VL, ~
- / IfOO J/?/np Uk, Ay, S~
~ . CD A Cuyg S~
AUSTRALIA ¢ To oy Y .

<
4 fy

™~ 2 - /
ELECTRONICS RESEARCH LABORATORY . o,

AD-A231 382

Information Technology

. L) [] L]
L h ;‘ il 4 DlVlSlOn
1 4 i, “ R
. S R WP N
‘;w J‘- :_-"."“!‘-' ;: ;-
Ty JAN 171391 5
A :
‘ﬂ_ AL v f"
f? - TECHNICAL REPORT
B ERL-0526-TR

RAPID PROTOTYPING : FOR WANT OF BETTER WORDS

by

Stephen P. Jones

\ —— -
\

SUMMARY

- Rapid prototyping is widely promoted as being an effective technique to assist the
development of coinplex systems. While the phrase is commonly used and discussed
within the software system development community, the interpretation is somewhat
diverse and the technique itself has not been widely adopted in practice. This paper
reviews the recent literature on the subject of 'rapid prototyping’ and in highlighting key
texts, aims to provide a definition of the terminology and tries to put prototyping into
context as a necessary and integral component of the software system development life
cycle. The paper discusses the incompatibility of prototyping and the traditional life cycle
model and proposes an alternative life cycle model which incorporates prototyping as an

integral activity. 7 __—
@gCOMMONWEALTH OF AUSTRALIA 1990 3 £
SEPT 1990 COPY No. “

APPROVED FOR PUBLIC RELEASE

POSTAT ADRESS: Director, Electronics Researck Laboratory,PO Box 1600, Salisbury, South Australia, 5108.
CRL-0525-TR

UNCLASSIFIED '

UNCLASSIFIED ERL-0526-TT.

CONTENTS

1 Introduction 1
2 Surveying the Literature 3
2.1 An Analysis of the Terminology 3
22 A Possible Definition 3
23 A Framework for Discussion i 4
231 Classes of Prototypes. 4

2.3.2 An Alternative Prototype Classification 4

2.3.3 The Preferred Prototype Classification 5

3 The Need to Prototype i L7
3.1 Exploratory Prototyping 7
3.2 Experimental Prototyping L 8
3.3 Organisational Prototyping 8
3.4 The Benefits of Prototyping 8
3.5 The Prototype asa Throw Away Item 9

4 The Traditional Life Cycle Omits Prototyping 11
4.1 The Conventional Approach 1
4.2 The Weakness of the WaterfallModel 11
4.3 The Need for an Alternative Model 12

5 A Life Cycle that Incorporates Prototyping 13
5.1 The Spiral Modelasa Framework 13
5.2 The Change Classification Method 14
53 A Sensible Combination o 15

6 Prototype Implementation Approaches 17
6.1 Implementing Exploratory Prototypes 17
6.1.1 User Interface Management Systems (UIMS) 18
6.1.2 User Interface Toolkits 19
6.1.3 Object Oriented Languages 19

6.2 Implementing Experimental Prototypes 19
6.2.1 Design Prototypes 20
6.2.2 Performance Prototypes e 20
6.23 Hardware Prototypes it 21

6.3 Implementing Organisational Prototypes 21
6.3.1 Ergonomic Prototypes o 21
6.3.2 Functional Prototypes 21

7 Future Trends in Prototyping 23
8§ Discussion. 25
9 Conclusion e 27
References 29

UNCLASSIFIED i

ERL-0526-TR UNCLASSIFIED

LIST OF FIGURES

1 Mayhew and Dearnley’s PUSH’ Pyramid. 5
2 Mayhew and Dearnley’s Alternative Classification. 6
3 Boehm'sSpiralModel. 14

ii UNCLASSIFIED

w

UNCLASSIFIED ERL-0526-TR

1 Introduction

The major proportion of systems being developed today are highly dependent on software in
order to properly function. The software content of these systems is larger and more complex than
ever before and the term ‘software system engineering’ is often used to describe the process of
management and development of such software intensive projects. Software system engineering
is but one part of the total system engineering process, but unlike system engineering, it is still
very immature both in terms of the development process itself and the definition of terminology
used throughout the process. This paper considers the use of the term ‘rapid prototype’ within
the context of the software system engineering process.

The phrase ‘rapid prototyping’ is becoming more commonly used within the software system
development community to describe the process of generation of pre-production items that
resemble the end products to varying degrees of representation and whose intended uses are
extremely diverse. One particular rapid prototype may exhibit only superficial resemblance to
the end product while another may dicplay a high degree of equivalence to the end product in
every way. The absence of a common definition or framework for discussion leads to widely
differing interpretations of the terminology and serves to promote confusion between current and
prospective users of that terminology.

This paper surveys the field of rapid prototyping with a view to providing an insight into
what is meant, for want of better words, by the phrase ‘rapid prototyping’. The paper presents
both a definition and a framework around which to discuss the topic of rapid prototyping,
gleaned from research of numerous articles published in the field, and discusses the need for
rapid prototyping throughout the software system development life cycle within the context of this
framework. The paper addresses the impact that rapid prototyping has on the traditional software
system development life cycle and discusses an alternative development life cycle approach which
accommodates rapid prototyping. Finally the paper discusses different approaches to prototyping
and highlights the use of current and possible future tools to assist with the exercise.

] Focenit o o]
’r-; A0S arag)

l D 7R
DU o ried
i Juslieanon

[m— e L

1

By

L] "

1

Ay L

— e e =

UNCLASSIFIED i

ERL-0526-TR UNCLASSIFIED

THIS PAGE INTENTIONALLY LEFT BLANK

2 UNCLASSIFIED

UNCLASSIFIED ERL-0526-TR

2 Surveying the Literature

A survey of the available literature dedicated to the topic of ‘rapid prototyping’ highlights
the varied interpretation and scope applied to the use of the terminology throughout the software
system engineering field. This diversity of use of the terminology h2s prompted numerous papers
proposing possible definitions and/or frameworks around which to discuss the topic.

2.1 An Analysis of the Terminology

The word ‘prototype’ is derived from the Greek ‘protos’ meaning first and is used outside
the software system engineering field to describe the original item in relation to any further
copy, imitation, representation or improved product. Gregory [1] uses the traditional engineering
definition when he describes a prototype as ‘containing all of the final products functionality and
to all intent and purpose as being a hand crafted version of the final production model’. This
highlights the gross misuse of the term ‘prototype’ in the software system engineering field, where
it is commonly used to define the generation of an item which may only bear a partial resemblance
to the final product.

The adjective ‘rapid’ over-emphasises the short development time normally expected for the
production of a prototype, to the extent that it suggests that either a magical solution is employed
or free license is given to ‘hack’ a solution. The word does not convey the relatively short time
expected for the production of a prototype as compared to the very long development lead times
associated with the production item.

While the terminology is less than perfect, it has been widely used within the software system
engineering community for long enough to have gained a foothold and is unlikely to be replaced.
In accepting this fact, it is vital that the popular misconceptions accompanying the terminology
are removed and a common definition and framework around which to discuss the terminology
is identified.

2.2 A Possible Definition

Gregory [1] and Weiser (2] both found the need to use alternative terminology in order to
provide a more semantically correct definition for use in the software system engineering field.
The terms ‘mock-up’ and ‘scale-model’ were used respectively, to convey the experimental nature
and non equivalence of the generated item when compared to the final product. The terminology
was chosen to suggest the early introduction into the production life cycle along with limited but
natural interaction with the intended environment.

Weiser's [2] definition of the terminology, which follows, provides a suitable basis for
discussion, but it will become evident that this definition does not totally cover all aspects of
today’s use of the terminology.

‘A prototype of a system is a model of that system which sacrifices accuracy in some areas
for a quick check of the systems functionality. A prototype is one kind of scale-model, a model
accurate in some ways but inaccurate in others’.

This definition includes a less emphatic reference to speed of production, and makes redundant
the adjective in ‘rapid prototyping’. The unqualified term ‘prototype’ is therefore used throughout
the remainder of the discussion.

UNCLASSIFIED 3

M

ERL-0526-TR UNCLASSIFIED

2.3 A Framework for Discussion ®

Given the diversity of use of the term ‘prototype’ and the increasing interest in adopting the
technique to assist software system development, the need for a framework in which to discuss
the topic is crucial.

2.3.1 Classes of Prototypes

Floyd [3] and Law [4] realised the need not only to provide an overall definition of the term
‘prototype’ but moreover the need to provide a structure in which to discuss classes of prototype.
Floyd (3] classified prototypes as being one of either exploratory, experimental or evolutionary.
Law [4] extended this classification to include performance and organisatioral prototypes. The ®
value of such classification is not only the provision of a framework and suitable terminology
around which to discuss prototyping but also to emphasise the scope of prototyping and highlight
where a particular class of prototyping is applicable within the software system development
life cycle.

The five classes of prototype defined by Law [4] are summarised as follows:

* Exploratory prototypes provide the early focus for discussion during the requirements
elicitation and verification phases.

* Experimental prototypes provide the platform on which to evaluate the proposed software)
system design.

* Evolutionary prototypes are concerned with the gradual adaptation of operational systems
to cater for newly identified or changing requirements, the previous operational system
serving as the prototype for the new development. This class is the most controversial and
is often mistakenly equated to incremental development. It could be argued that this class
lies outside the scope of prototyping as we have previously defined it. This does however
raise the question as to whether or not a prototype should be a throw away item or a
product of an evolutionary development life cycle.

* Performance prototypes are concerned with confirmation that the system will meet its ®
stated requirements in terms of perforriance, response and system loading. This could be
considered to be a special case of the experimental prototype class.

* Organisational prototypes are concerned with exercising the system in the end user
envirorment, in order to confirm completeness of the solution and compatibility of the
existing work practices. This may highlight the need for new manual procedures to be
adopted, new job descriptions to be written or training to be provided. This again may be
considered a special case of the experimental prototype class although there is a distinct
difference in its purpose.

2.3.2 An Alternative Prototype Classification

A useful and preferred alternative approach to classification, put forward by Mayhew and
Dearnley [5), considers the four components of a prototype system; the Prototyper, the User, the
Software and thc Hardware and how each component interacts with each other. This prototype
classification is assisted by means of their ‘PUSH’ pyramid, illustrated in Figure 1, where each of ®
the vertices represents a component and each connecting edge their respective interaction.

4 UNCLASSIFIED

————— SR S S

UNCLASSIFIED ERL-0526-TR

® Mayhew and Dearnley [5] use their ‘PUSH’ pyramid to interpret Law’s [4] five classes of
prototype through analysis of how they relate to the interacting components. The result is the
derivation of an alternative classification which introduces the flexibility to consider classes of
prototype not just by their applicability to particular stages of the development life cycle but also
by the importan-e attributed to the interaction of the key components of any prototype system.

Mayhew and Dearnley’s classification [5], introduces a prototype category for each pair of
interacting components represented on their PUSH’ pyramid. These six categories are summarised
as follows:

2.3.3 The Preferred Prototype Classification

Mayhew and Dearnley (5] further group their six categories to form three distinct classes of
prototype as shown:

Exploratory, used to establish system requirements, concentrating on the communication
between the system and the user.

Experimental, used to verify aspects of the software design.

Performance, used to establish whether or not the target system will handle the anticipated
load.

Hardware, used to establish the suitability of the chosen hardware.
Ergonomic, used to assess the physical acceptability of the system.

Functional, used to verify the completeness of aspects of the system.

Exploratory.
Exploratory.
S
Functional Performance
Experimental
Ergonomic

v H
Exploratory ’ Hardware

Figure 1: Mayhew and Dearnley’s PUSH’ Pyramid.

UNCLASSIFIED 5

ERL-0526-TR UNCLASSIFIED

* Experimental. Py

Experimental.
Performance.
Hardware.

* Organisational.)

Ergonomic.
Functional.

Althcugh based on Law’s[4] classification, the emphasis of Mayhew and Dearnley’s [5]
classification is centred around both the pnmary intent of the prototype and the key participants of e
the prototyping exercise. Mayhew and Dearnley [5] point out that, ‘any one prototype may contain
elements of many categories outlined above; however it is important to be able to recognise and
separate each one of these individual intentions’.

Figure 2 provides a slightly modified representation of Mayhew and Dearnley’s [5] alternative ®
classification of prototypes.

For the sake of clarity, Figure 2 has an additional column depicting ‘sub-class’, which has been
added to the representation, and the term ‘design’ introduced at the sub-class level to replace the
repeated use of ‘experimental’.

It should be noted that this alternative classification omits Law’s [4] class of evolutionary
prototype, but it is accepted that prototypes themselves may be evolutionary and an exploratory
prototype may evolve into an experimental prototype. This again raises the question as to whether
a prototype should further evolve into the end product or be treated as a separate throw away item.

This alternative classification serves to assist the prototyper in focusing his attention on the
intent of the prototype and the role of the interacting components. This is important in defining
the prototype itself and also the objectives of the prototype evaluation exercise. This classification,
along with the previous definition of the term ‘prototype’, will form the framework for further
discussion.

Class Sub-Class Interaction Comment ®

Exploratory N/A Prototyper/User chuimmenlt.sd elicitation and
validation

Experimental Design Prototyper/Software Testing the software design

Performance Software/Hardware Will the proposed system cope? o

Hardware Prototyper/Hardware Is the chosen hardware suitable?

Organisational Ergonomic User/Hardware Hardware set-up considerations

Functional User/Software Complete system suitability

Figure 2: Mayhew and Deamley’s Alternative Classification.

6 UNCLASSIFIED

A A A e e s e e A e A

UNCLASSIFIED ERL-0526-TR

3 The Need to Prototype

PY The importance of prototyping as a risk reduction exercise within the software system
development life cycle is becoming more widely accepted. Sommerville [6] and Pressman (7]
both include sections in their books on software engineering, promoting prototypi g as an integral
part of the software production life cycle. Both authors highlight the benefits of prototyping as
a verification and refinement exercise useful to augment the normal development approach but
not to replace it. Indeed it may well be the case that the system/software requirements are well
defined and fully understood from a previous implementation. In such a case prototyping would
be both wasteful and unnecessary.

Mayhew and Dearnley’s [5] prototype classificatior provides an appropriate framework within
which to discuss the topic of prototyping in relation to the software system development life cycle.

3.1 Exploratory Prototyping

The early introduction of exploratory prototyping to assist in the derivation of a more complete
and less erroneous requirements specification has significant effect in reducing the time and effort
expended during the production phase of a project and also later during the maintenance phase.
This in turn significantly reduces the overall cost of the project and in general produces a product
that is more robust and far more acceptable to the customer. Boehm [8] highlights the effects of a
badly stated requirement specification on the latter phases of the development life cycle and also
during the in-service maintenance phase. He points out that the majority of program maintenance
® is not due to the correction of erroneous program code but modification to support changes to, or

errors in, the original requirements specification.

Exploratory prototyping however, as stated by Gomaa [9], ‘does not eliminate or reduce
the need for a comprehensive analysis and specification of user requirement, it merely provides
Y assistance in these activities’. Exploratory prototyping is particularly effective in situations where
the customer cannot use past experience to specify what is required, which is usually the case
when defining a radically new system. In such ca.es, past experience will be of only limited value
in the specification of the new system.

The use of exploratory prototyping to establish the human computer interface requirements, in
conjunction with the end user, is one important and widely accepted practice. This may take the
form of a simple interactive prototype exhibiting superficial resemblance to the end product that
allows preliminary definition/investigation of the cosmetics of the user interface or a sophisticated
prototype providing a realistic and representative imitation. In highly user interactive systems,
where efficiency, accuracy and ease of operation are necessary, it is vital that the requirement
o specification of the user interface be derived through practical interaction with a representative

system. This is particularly important in the case of systens where an erroneous or delayed
interaction could have severe consequences and in the worst case lead to loss of life. While it is
possible to capture the total interaction via a paper model, as Weiser [2] indicates ‘the use of a scale
model allows the intended users of the system to react directly to the prototype as they would to
® the real system, rather than having to urderstand an esoteric design language. A user interface
prototype will attempt to capture the idiosyncrasies of interactions with the proposed system.’

UNCLASSIFIED 7

e e ——————— SR

ERL-0526-TR UNCLASSIFIED

3.2 Experimental Protoiyping o

The use of experimental prototyping at the production stage is normally directed towards area-
identified as ‘high risk’ during the risk analysis exercise. The focus of experimental prototyping is
directed towards areas of the software system identified as particularly complex, highly dependable
or performance critical

The construction of a design prototype or prototypes, in order to investigate the technical
merits of one or more possible solutions to an identified problem, allows the designer to gain a
better insight into the area in question and to proceed with the design having confiaence that the
end result will provide an impiementable and useable solution.

In systems where performance is a key issue, the construction of a performance prototype
or prototypes enables investigation of time or resource critical areas of the design. This form of
prototype necessitates use of the proposed development facilities and target execution environment
in order to obtain relevant and meaningful results. This in itself allows practical evaluation of
the development tools and provides a means {or gaining familiarity with the target environment.
In some cases it may be necessary to conduct a performance aralysis exercise with the aid of a
performance modelling tool in order to iderify the critical areas of performance within the syst-m.
Results obtained through execution of a performance prototype may then be used to calibrate the
theoretical model. Through the process of iteration, a stable model may be derived with which
‘what if’ question and answer sessions may be conducted in order to gain further insight into the
performance related behaviour of the system.

Hardware prototypes are constructed in order to assist in the selection of system hardware.
This may be necessary to assist in hardware/software trade-offs or simply to allow a <hoice to
be made between components based on such factors as functionality offered, type of interface or
simply ease of integration with the software.)

3.3 Organisational Prototyping

Organisational prototyping is quite distinct from explora‘tory .r experimental prototyping,
in that it is used to address the issues of compatibility of the end product with the intended
environment. The purpose of the prototype is not to assist in the derivation of a specification or @
design solution for a particular system but rather to investigate the completeness of the proposed
solution in terms of both its ergonomic and functional characteristics.

Ergonomic prototypes are concerned with assessing the physical acceptability of the system
in terms of the mechanics and efficiency of operation, aesthetic qualities, general health and safety ®
considerations or simply correct size and shape for the target environment.

Functional prototypes are probabl, the most widely used and earliest form of prototyping
undertaken. They concentrate on providing an implementation of the behaviour of the system,
without necessarily using the final algorithm, implementation language or execution environment.
Their prime objective is to provide a platform for evaluation of the completeness and correctness ®
of interpretation of a requirement specification, with regard to what the system is required to do,
ignoring issues of optimal design and performance.

3.4 The Benefits of Prototyping

The undoubted benefit of prototyping is the acquisition of additional knowledge about the o
system, gained by interaction with the environment within which it will eventually reside as a

8 UNCLASSIFIED
I TN NIRRT NN~~~

UNCLASSIFIED ERL-0526-TR

product. This allo.’s a more complete specification of the product to be produced. It allows
the designer to prove the technical feasibility of his design and, equally important, that the
functionality offered by his design matches the customer expectations. Prototyping reduces the
risks associated with the production of complex, highly interactive and performant systems which
in turn must reduce the overall cost. Brooks [10] suggests that developers should throw away the
first implementation of a system, accepting that it will be wrong first time around. Prototyping of
selected risk areas identified within a system is one way to counter this suggestion and ensure, as
far as is possible, that the end product will be correct.

An often neglectea venefit of prototyping is the visibility the customer gains of the production
process. Prototypes provide a basis for customer dialogue and can serve as a platform through
which to demonstrate the progress of a project with regard to overall appreciation of both the
requirement and major technical issues of development. As Carey and Mason [11] point out
‘with prototypes a distinct attempt is made to produce a “specification” which users can directly
experience. Communication with users, particularly the non-specialist, is a major motivator behir..1
prototypes’.

3.5 The Prototype as a Throw Away Item

Trototyping should be considered an intcgral part of the software system development life
cycle. To be effective and to be widely accepted as a necessary process within the life cycle,
prototyping must be comparatively inexpensive and provide relatively quick but positive results.

Most prototyping exercises that are undertaken are conducted as a separate and parallel
exercise to the main stream development. In order to meet the stated objectives within a short
time scale and with minimal cost it is necessary to relax the stringent quality standards applied to
the development of :he product. As a result, the developed prototype or prototypes are normally
minimally documented, lacking in development history and due to the rapid and iterative nature
of their development, possibly badly structured. The implementation language and operating
sy.‘em sometimes differ from the intended product and the items themselves are likely to lack
the reliability and roburstness required of an end product. In addition such issues as design for
portability, reusability and maintainability may have been sacrificed for -peed of development.

Given this gencral approach to prototyping, it is difficult to justify the inclusion of even the
most useful components of the exercise into the main product development. In the absence of
essential quality assurance techniques and without the ability to measure the quality of a software
system component, independent of the process used to nroduce that component, it is difficult to
accept the product of the prototyping exercise as being anything other than a throw away item
Somerville (6] recommends that ‘the prototype should be considered as a “throw away” system
and should not be used as a basis for further development’. This is also consistent with Mayhew
and Dearnley’s [5] prototype classification which omits Law’s [4] evolutionary class of prototype.

Davis [12] uses the acronym RAMP, reliability, adaptability, maintainability and performance,
to capture the essential system properties which are generally ignored when prototyping and
suggests that ‘technology is not yet available to retrofit RAMP requirements’. He suggests that
‘evolutionary prototypes will become more practical in the future as techniques for retrofitting
KAMP requirements are developed’.

While it is desirable to completely integrate the prototyping process into the development life
cycle, this is only achievable if the underlying life cycle moael is flexible enough to accommodate
prototyping and a suitable prototyping methodology is adopted, thereby ensuring adequate quality

UNCLASSIFIED 9

ERL-0526-TR UNCLASSIFIED

assurance. Alternatively the chosen development environment should be rich in tools to assist ®
or even automate prototype generation. Under such conditions the evolutionary prototype so far

rejected will have a place and prototypes will become bi-products of the development life cycle

rather than products of a less stringent and separate development process.

10 UNCLASSIFIED

e

UNCLASSIFIED ERL-0526-TR

4 The Traditional Life Cycle Omits Prototyping

The conventional approach to software system development has been criticised due to its
emphasis on a static paper representation of the specification or design, coupled with deferral of
implementation until very late in the life cycle. Prototyping, as so far defined, lies outside of the
scope of the traditional life cycle model and is often conducted as a separate parallel exercise,
normally limited to exploratory prototyping of the human computer interface or organisational
prototyping at the functional level. Effort is usually directed towards the prototyping of the areas
which are difficult to specify using the conventional document driven development approach.

4.1 The Conventional Approach

The conventional software development life cycle model, more commonly known as the
waterfall model, has provided the basis for software production for more than a decade. The
waterfall model, defined as early as 1970 by Royce [13] and refined by Boehm [14] in 1976, provides a
systematic approach to software development through a sequence of distinct development phases.
The life cycle begins with a system requirements phase and progresses through the software
requirements, preliminary design and detailed design phases deferring implementation detail until
the latter code and systems test phases of the life cycle.

The waterfall model dictates a series of phases with verification, validation and feedback
occurring at each phase, satisfactory completion of one phase being a prerequisite for progression to
the next phase. The waterfall model enforces a document driven approach to software development
requiring increasing elaboration of specification of each component, to a uniform level of detail,
at each phase of the life cycle. The model provides project management with readily identifiable
milestones, corresponding with completion of each life cycle phase, and allows the progress of the
project to be measured according to the successful achievement of each milestone. The underlying
assumption of the waterfall model, as pointed out by Agresti [15), is that ‘successful software is
developed by successively achieving sub-goals which correspond to the generation of intermediate
products at each milestone’.

4.2 The Weakness of the Waterfall Model

The waterfall model has provided a much needed framework for software development for
moie than a decade but its usefulness is now in question. As highlighted by Agresti {15], the
documentation driven approach reflects the needs of the period in which it was developed, a
period lacking availability and access to cost effective hardware and software resources. This
lack of resources and sophisticated tools to support rapid implementation and experimentation,
coupled with the experiences of badly produced (hacked) systems, concentrated effort in providing
a systematic and highly analytic development model. The model focuses on the analysis and
design specification activities in recognition of the problems caused by premature entry into the
coding process which was common practise at the time of its introduction.

The waterfall model relies on the domain knowledge of individuals combined with their
interpretation of the perceived customer needs as a basis for the specification of each software
component. In a situation where the product is new or the customer is unsure of the requirements,
or even both, the waterfall model becomes inappropriate.

While emphasising the production of complete and validated paper specifications at each phase
of the life cycle, the model completely ignores the maintenance of these specifications in the light of

UNCLASSIFIED 11

M

ERL-0526-TR UNCLASSIFIED

errors discovered during the latter code, test and maintenance phases. Indeed the model assumes
the validated specifications to be correct. Consequently users of the model tend not to maintain
total consistency between the specifications and the delivered product due to the enormous cost in
time and effort required to re-work the original and subsequent affected documentation.

4.3 The Need for an Alternative Model

The recent availability of high performance hardware and the emergence of sophisticated
development tools brings into question the approach of deferral of implementation until late in the
life cycle. Indeed the undoubted benefits of prototyping throughout the whole of the life cycle, as
have been discussed, can now be realised. This questions the applicability of the waterfall model as
a basis for all software system development and highlights the need for an alternative or extended
model which accommodates prototyping as an integrated activity within the development life
cycle. It should be noted that the author is not advocating the total rejection of the waterfall model
but suggesting limiting its use to a category of well understood and familiar problems where the
introduction of prototyping would be of little or no benefit.

While prototyping is becoming more widely accepted as being beneficial to the software system
development process, it is still yet to be widely adopted in the development of real-time systems.
This may be attributed to the large investment by the industry in the development of standards
and procedures to support software system development using the conventional waterfall model.
Alternatively, it may be that the industry finds it difficult to envisage the introduction of a
development process where iteration and re-work are not only accepted as a natural consequence
of the process but are encouraged by that process. It is understandable that the industry will view
the process with a certain scepticism until a defined framework and methodology for prototyping
not only exist but are proven in the field.

12 UNCLASSIFIED

M.

UNCLASSIFIED ERL-0526-TR

5 A Life Cycle that Incorporates Prototyping

The main objective of prototyping is to reduce the risks associated with the production of
a system and in doing so raise the quality of the generated product. Given these objectives,
it is difficult to argue against the inclusion of prototyping as an integral process within the
software system engineering life cycle. It is ironic that the lack of quality control applied to the
prototyping process itself, has restricted the benefits to be gained from prototyping. If prototyping
is to be integrated within the development life cycle, it must be supported organisationally,
methodologically and with adequate tool support not only to aid in the prototype production
but also in the prototype assessment. Given such support the prototyping process will provide a
valuable quality assurance technique and increase the benefits to be gained from prototyping by
the possible re-use of prototype components in the production item. A candidate life cycle model
which readily incorporates prototyping, with the flexibility to choose if and when prototyping is
necessary, is the spiral model.

5.1 The Spiral Model as a Framework

Boehm [16] introduced the spiral model to provide a framework for guiding the software
development process from a risk driven approach as opposed to the conventional documentation
driven approach. The spiral model focuses on the formulation of strategies for resolving areas
of risk. The model is flexible and accommodates any mixture of approaches including both
specification oriented and prototype oriented. The spiral model allows the choice of a strategy
appropriate to the particular development problem and risks. The spiral model, as its name
suggests, involves a cyclic activity where progression within a cycle involves the same sequence
of steps for each component of the product throughout each of its levels of elaboration. The spiral
model is illustrated in Figure 3.

The spiral model allows for the progressive generation of specifications incorporating varying
levels of detail, with the ability to defer the elaboration of low risk elements until the high risk
elements have been prototyped, understood and specified. This risk driven approach allows the
tailoring of the model towards an equivalent waterfall model, in the case of projects with low
technical risk but critical budget, schedule and control.

While the spiral model provides an organisational framework for conducting the software
system development process, into which prototyping may be integrated, it does not provide a
methodology for prototyping. The lack of such a methodology to date may be yet another reason
for the reluctance by the software system industry to introduce prototyping into the development
life cycle. Strict management of the prototyping process is essential in order to sensibly constrain
the process to operate within defined objectives, timescales and scope.

The prototyping exercise itself will identify the need for change both at the local component
and system level, and management must have the ability to monitor change proposals, assess
the implications of change and confirm any amendment to the appropriate level of specification.
Mayhew, Worsley and Dearnley (17] propose a method for controlling prototype development,
which they have named the ‘Change Classification Method’. The method has been used on a
commercial project in the UK with some success, although as the authors point out ‘there remains
a great deal of work to be carried out in the prototyping control area’.

UNCLASSIFIED 13

B

ERL-0526-TR UNCLASSIFIED

5.2 The Change Classification Method

The change classification method addresses five issues highlighted by Mayhew, Worsley
and Dearnley [17] as fundamental to assist the management of any project which incorporates
prototyping. These they summarise as follows:

» To assess and control the effects of prototyping, to determine its impact on the project as
a whole both in terms of resources and timescale.

* To ensure that the prototyping process is productive and providing useful insight into
aspects of the system.

* To ensure that the prototyping process is converging, not contradicting previous
prototyping results.

» To recognise and control the effects of change propagation which would otherwise disrupt
aspects of the system thought to be complete.

* To control the actual prototyping exercise, organisationally.

Cumulative
3 cost
Determine Objectives, -] -~ Evaluate Altemnatives;
Alternatives, Constraints Progress Through Steps Identify, Resolve Risks

Commitment

Risk Analysis

Risk Analysis

Risk Analysis

Prototype3 \prototype

Operational

Perition Rqts Plan
Life Cycle
Software
Product
Design Validation
and Verification
IEE—
Integra-
Implem- Accept- tion and
entation |ance Test Test
e Develop, Verify
Next Phase Next Level Product

Figure 3: Boehm’s Spiral Model.

14

UNCLASSIFIED

UNCLASSIFIED ERL-0526-TR

The method assumes the objectives of each prototype iteration exercise to be well defined and
appropriate milestones set, prior to the exercise beginning. The method centres around the
monitoring and capturing of change requests, suggestions and comments generated during the
prototype evaluation exercise. The types of change are categorised as one of either cosmetic,
local or global.

* Cosmetic changes are considered trivial and have no repercussions elsewhere in the
system. They are purely concerned with the formatting and presentation of already
available information to the end user.

* Local changes are those which have a relatively local impact on the system but require
additional information to be presented or new local facilities to be added. These highlight
minimal local design changes.

* Global changes are those which have a significant impact on the rest of the system
outside of the component being prototyped. These will highlight the need for substantial
amendment to the proposed design.

The above classification is used to distinguish the scope of each suggested change and is
used to indicate which set of procedures to follow in order to react to the suggested change. The
method insists all change requests are recorded regardless of their class. The action procedures
followed differ significantly depending on the class of change highlighted. Cosmetic changes are
directly incorporated into the current prototype component. Local changes require that the current
prototype is backed up prior to the changes being made to the prototype component. Each local
change is also subject to a design inspection to validate the corrective action. Global changes
require a design review and are not incorporated into the prototype. The implications of such
changes require careful consideration and justification before being accepted as necessary. The
review requires participation from both senior technical and managerial personnel to decide if and
in what manner the changes will be made.

The change classification method uses the three categories of change request to provide
management with a means of assessing the scope of the suggested changes. The accompanying
change procedures provide the necessary controls for each iteration of the prototype. The record of
all changes provides a valuable history of the progress of the prototype. The confirmation necessary
for global changes allows project management to retain control and the regular design reviews and
inspections necessary for all but cosmetic changes provides valuable and rapid feedback on the
technical aspects of the prototype. The adoption of a set of procedures by which to control and
monitor the prototyping process also overcomes certain of the quality issues previously identified
with prototyping.

5.3 A Sensible Combination

The spiral model provides a suitable framework for the software system development life cycle
with the risk driven approach encouraging prototyping where necessary. The change classification
method for controlling the prototyping process provides a much needed basis from which to
evolve the control aspects of prototyping. As a combination they provide a sensible basis for the
software system development life cycle, which is likely to provide the customer with the product
he needs rather than the one he thinks he needs. The element of control introduced by the change
classification method should allay the fears which have so often led to the rejection of prototvping
as an integral component of the software system development life cycle. With wider adoption of
the spiral development model being inevitable as customers insist on phased deliveries of large

UNCLASSIFIED 15

. e SR

ERL-0526-TR UNCLASSIFIED

systems, full advantage of the ability to prototype will be taken and the need for a formal approach
to prototyping will become necessary.

The addition of a suitable analysis tool, capable of assessing the quality of the software within
the prototype implementation and assisting the identification of possible re-usable components for
inclusion in the production item, would greatly enhance the benefits to be gained by adopting
a prototyping approach. The combination of such a facility and the prototyping methodology
discussed, would provide the necessary quality assurance so far lacking in the prototyping
environment and remove a major obstacle which has inhibited the effective re-use of prototype
implementation. The notion of prototypes being ‘throw away’ could then be reviewed.

The economic benefits to be gained from the re-use of suitable software components will
encourage the adoption of a prototyping approach, but these immediate short term benefits should
not obscure the overall quality enhancement and associated long term benefits to be gained from
prototyping, even in the current ‘throw away’ form.

16 UNCLASSIFIED

—————-M.

UNCLASSIFIED ERL-0526-TR

6 Prototype Implementation Approaches

When considering prototype implementation approaches, the intent of the prototype itself is
the key factor in deciding which particular approach is appropriate for a given situation. It is
therefore sensible to discuss the topic using Mayhew and Dearnley’s [5] prototype classification
as previously discussed.

6.1 Implementing Exploratory Prototypes

Exploratory prototypes assist the iterative process of requirements elicitation and verification,
by providing working models through which dialogue developers, systems analysts and prospective
users may directly observe and experience the system behaviour. Working models not only provide
the platform through which the human computer interface may be developed and refined, but
also assist in the overall systems analysis exercise, by conveying the results of the analysis to the
end user in a non technical form. The prototype iteration may serve as a learning process for all
involved, particularly in cases where the initial requirements are vague. A major benefit to be
gained from exploratory prototyping is the removal of the communications barriers which often
exist between the end users and the system developers. An executing model provides the platform
through which the end user can articulate his needs without having to understand specialised
design notation.

Exploratory prototyping is primarily concerned with the derivation of the human computer
interface which enables the end user to effectively carry out his system tasks in close cooperation
with the underlying machine. In order to easily develop interactive exploratory prototypes, it is
necessary to view the human computer interface as an integral but clearly delineated part of the
system. Separation of the system dialogue from the system computation allows decisions affecting
the dialogue to be completely isolated from the rest of the system. Hartson and Hix [18] provide
an excellent paper focusing on the theories, the methodologies and the tools for incorporating
dialogue design principles into human computer interfaces.

The concept of dialogue independence is fundamental to the success of exploratory prototyping.
The concept allows the prototyper to concentrate on the end user issues, ignoring the computational
detail of the underlying application. With the assistance of development tools which support the
concept, exploratory prototyping can be both cost effective and extremely expressive. Hartson and
Hix [18] provide a comprehensive summary of both research and commercially available tools to
assist human computer interface prototyping.

Current development tools available to assist exploratory prototyping fall into one of the
following categories:

* User Interface Management Systems (UIMS).
* User Interface Toolkits.
* Object Oriented Languages.

The tools, which fit into one of the above categories, all have the same objective but their
approach is distinctly different. Bass and Coutaz [19] provide a useful overview of the different
approaches and Dickenson, Benton and Atyeo [20] provide a brief summary of useful prototyping
tools. A comprehensive summary of commercially available tools with techniques to assist human

UNCLASSIFIED 17

————— R

ERL-0526-TR UNCLASSIFIED

computer interface design and rapid prototyping, is presented by Overmyer [21]. The above
categories are ordered to reflect the level of abstraction of the implementation offered, UIMS
offering very high levels of abstraction and object oriented languages very low ievels. The degree
of dialogue independence and the level of interface offered by the tools themselves are major issues.
These determine the degree of programmer assistance necessary when exploratory prototyping.

A novel approach to exploratory prototyping which utilises the higher level tools, is)
storyboarding. Storyboards are interactive models depicting the system functionality constructed
from a sequence of pre-defined display screens linked to input dialogue selections. The screens
may be raster images generated from scanned pictures or the raster output of graphics tools.
Storyboarding has proven to be a relatively cost effective way of exploratory prototyping. The
approach is generally implemented using UIMS or User Interface Toolkits which execute on low Py
cost hardware platforms offering reasonably high resolution screens. Andriole [22] describes his
experience of storyboarding as ‘a viable alternative to conventional modeling and prototyping’. The
technique has proved to be extremely successful in assisting with the derivation of the specification
for the Software Measurement and Analysis Testbed (SMAT), an environment being developed
within the Software Engineering Group of Information Technology Division.

6.1.1 User Interface Management Systems (UIMS)

A User Interface Management System (UIMS) is an environment which supports the
specification and execution of a human computer interface, in a dialogue independent and
programming language independent fashion. The dialogue developer may define the interface o
through a declarative definition language using a standard texi editor or by direct interaction with
the UIMS. The UIMS translates the dialogue description, into an executable representation and
produces the interface at run-time. A key feature of a UIMS is the ability to execute the dialogue
without an application system being present.

UIMS provide a very high level of interface to the dialogue developer along with facilities
to easily and quickly change the definition of the interface, without the need for programming
support. UIMS are normally built upon a user interface toolkit, which provides the workstation
and dialogue management. The dialogue independence offered by UIMS makes them ideal for

exploratory prototyping. °

Freeman (23] provides an overview and assessment of Open Dialogue, a UIMS produced by
Apollo, from work carried out at the Rutherford Appleton Laboratory. The paper summarises the
capabilities of this powerful UIMS which is commercially available for UNIX platforms. Bass ,
Hardy et al [24] and [25] provide two technical reports which describe the work carried out at
the Software Engineering Institute, Carnegie-Mellon University, describing their research UIMS, ®
Software Engineering Rapid Prototyping Environment (SERPENT). Both UIMS offer a high level
of user interface through declarative languages, are dialogue independent and are built upon the
X Windows System [26], a windowing library/toolkit developed at the Massachusetts Institute
of Technology (MIT).

An alternative and higher level of dialogue definition is provided by UIMS which offer an
interactive dialogue definition interface. Examples of interactive dialogue definition UIMS are
Prototyper, a Macintosh specific UIMS built upon the Macintosh Toolbox, and The Object Oriented
Graphical Modeling System, produced by Sherrill-Lubinski, which can be ported to numerous
vendors platforms (Sun, DEC , Silicon Graphics). The latter is built upon the hardware vendors °
proprietary toolkit (e.g. SunView, DECwindows) and can be considered a UIMS plus, in that it also

18 UNCLASSIFIED

i S e e e e e e e e e g s ann anad

UNCLASSIFIED ERL-0526-TR

provides facilities for animation of the interface via a user defined database. Although not designed
explicitly for this purpose, Hypercard, the Macintosh information retrieval and presentation system,
may also be considered as an UIMS. The facilities provided are more than comparable with those
of purpose built interactive dialogue definition UIMS.

6.1.2 User Interface Toolkits

A User Interface Toolkit is a library of routines and an underlying run-time kernel which
provide a high level interface through which human computer interfaces may be developed at
the programming level. The toolkit provides facilities which allow the programmer to define
the cosmetics of the interface and the routines which are to be invoked under defined dialogue
conditions. Typical facilities range from workstation management such as windowing, graphics
and text editing to dialogue handling in the ‘orm of menus, buttons and panels selected by mouse
interaction.

The emergence of high powered graphic workstations has seen such toolkits arrive as standard
items supplied with the operating system, but unfortunately in the form of proprietary software.
With standardisation and open system computing being key issues, the next generation of toolkits
will cater for greater portability. The X Windows System [26] is emerging as the industry standard
and will allow not only portability of developed software but also interoperability with different
vendors equipment.

While such toolkits offer a great deal of flexibility in generating the interface, they do not
enforce the distinction between user interface and application and they also require considerable
programming effort to manufacture an executable interface. User Interface Toolkits however
provide the infrastructure on which many UIMS have been developed, and due to their lower level
of interface offer a means of overcoming problems often encountered at the higher level.

6.1.3 Object Oriented Languages

Object oriented languages provide many of the features readily applicable to exploratory
prototyping, through inheritance, dynamic binding and abstraction. In addition, the language
environments include as fully integrated, such facilities as windowing and dialogue interaction.

Smalltalk is a programming language which after various incarnations has emerged in two
major commercially available forms, Smalltalk-80 and Smalltalk/V. Smalltalk was developed in
1970 at Xerox’s Palo Alto Research Centre. A Smalltalk program is made up of Objects, Methods
(operations offered by objects), Messages (which allow objects to communicate) and Classes (from
which objects inherit the same structure and operations). Smalltalk-80 executes on a Sun UNIX
platform using SunTools. Smalltalk/V, a product of Digitalk Incorporated, is an example of a low
cost environment which executes on IBM PC or compatibles and Macintosh platforms.

Although at first sight these languages offer a great deal more than conventional procedural
languages, they are often difficult to learn and, due to their run-time binding, perform
relatively slowly. Exploratory prototyping using object oriented languages would require full
time programming assistance and is therefore less attractive.

6.2 Implementing Experimental Prototypes

Experimental prototypes assist the software system designer in the derivation of solutions to
problems related to specific areas of the software design. They allow the designer to determine

UNCLASSIFIED 19

——-—“

o
ERL-0526-TR UNCLASSIFIED
the feasibility and acceptability of solutions to a particular problem. Experimental prototyping is ®
divided into three sub-classes as previously described. Implementation approaches for each of the
three sub-classes are described below.
6.2.1 Design Prototypes
®
Design prototypes, as the name suggests, assist the investigation of design issues. The
terminology is used explicitly in the area of software design and within this context covers
two distinct types of prototyping:
* Prototyping in the Large. ®

* Prototyping in the Small

Prototyping in the large refers to the experimental development of a skeletal software
architecture, which will eventually provide the basis for the development of the complete
system software. This may be necessary in order to define the interface to external users of ®
the system/software, to assist in the definition of sub-systems and their interfaces or simply to
assist the problem of partitioning and constructing large systems. Prototyping in the large becomes
particularly relevant when building large real-time distributed systems. The Ada programming
language provides suitable constructs which allow compilation and construction of a system with
minimal effort from its interface specifications and as such lends itself to supporting the generation ®
of such a framework.

Prototyping in the small refers to the experimental development of specific elements of the
software in order to investigate detailed design issues, evaluate alternative algorithms or simply
to assist in the derivation of a solution to a new and difficult problem.

Both of the above types of design prototyping would normally be conducted using the target ¢
implementation language, but not necessarily using the target hardware environment. A combined
approach, utilising both prototyping in the large and prototyping in the small, provides the
mechanism for addressing risk, both in terms of the breadth and the depth of the software design.
| J

6.2.2 Performance Prototypes

Performance prototyping refers to the experimental development of combined and
representative hardware/software elements of the system, in order to investigate critical timing,
space or throughput requirements. Investigation of performance at the component level is best ®
achieved using non-intrusive monitoring tools. Hewlett Packard produce a series of ‘intelligent’
logic analysers with both hardware and software options to assist performance analysis, and Cadre
Technologies offer their Software Analysis Workstation (SAW) which provides an integrated set
of hardware/software facilities to measure and verify performance. While it is not possible to
guarantee the total system performance from the results of such specific prototypes, a combination
of prototyping and systems performance modelling can provide valuable insight into overall
system behaviour.

The Performance Analyst’'s Workbench System (PAWS) [27], a product of Information Research
Associates, provides the ability to model software, hardware and human components at any desired
level of detail, based on a modelling methodology using pictorial representation and a simulation ®
language to describe and evaluate the pictures.

20 UNCLASSIFIED

WM.

UNCLASSIFIED ERL-0526-TR

Such modelling tools allow the system behaviour to be captured, and by simulation, provide
estimates of the system performance. Calibration of the models, using practical results obtained
from specific executing components, allows evolution towards a stable model offering a greater
degree of confidence of its output results. The models are particularly useful in indicating the
sensitivity of particular system parameters and as such assist in the risk assessment exercise by
indicating areas requiring further performance prototyping.

6.2.3 Hardware Prototypes

Hardware prototypes are primarily used to assist in the selection of system hardware, but they
also provide the mechanism for investigation and familiarisation with detailed software/hardware
integration issues. The construction of representative and inter-connected physical processing
elements of a system allows sustained operation of the chosen hardware in the target situation,
in order to verify environmental and reliability requirements. In addition, the integration of new
components with existing hardware and software elements of the system, allows compatibility
checks of both the physical interfaces and software/hardware protocols. The construction of
hardware prototypes allows both hardware and software engineers to fully understand the low
level interfacing detail early in the development, thereby allowing an easier transition of production
software from the host to the target environment.

6.3 Implementing Organisational Prototypes

Organisational prototyping involves the end users of the system operating the prototype in the
target environment. This gives the user the ability to assess its functional completeness and overall
suitability, in addition to any organisational issues which may arise due to the introduction of the
new system. Organisational prototyping is divided into two sub-classes as previously described.
Implementation approaches for each of the two sub-classes are described below.

6.3.1 Ergonomic Prototypes

Ergonomic prototyping refers to the generation of a ‘mock-up’ or ‘scale-model’ of the physical
system with which the human interacts. Ergonomic prototypes allow evaluation of mechanical
issues, such as correct position and posture for ease of reach of controls, effects of physical layout
on human efficiency of operation, and aesthetic acceptability to the end user.

Ergonomic prototypes are often built to scale from materials that are cheap to use and quick
to sculpture into the correct physical shape. Elements of the prototype may however be final
target system components, particularly in cases where it would be difficult and non economical to
substitute for them, or where their replacement with a mock-up would detract from the overall
effect of the prototype.

6.3.2 Functional Prototypes

Functional prototypes create an illusion of the final system/software, in terms of the
functionality and data transformations offered, by mimicking the real system algorithms. The
implementation of functional prototypes may be accomplished using alternative languages and
execution environments to the target system, as optimisation of performance or accuracy of results
is not an issue. Functional prototypes may be implemented at one of two levels, system or software.

System functional prototypes exhibit the behaviour expected by external interfaces of the
system, whether human or other systems. In the case of human interfaces, functional prototyping is

UNCLASSIFIED 2

M

ERL-0526-TR UNCLASSIFIED

very similar to exploratory prototyping, except the intent is very different. Rather than eliciting the
requirements, the prototype provides a vehicle to demonstrate the completeness and/or correctness
of the systems functionality, and its compatibility within the environment in which it will operate.
Many of the techniques discussed for exploratory prototyping are applicable for system functional
prototyping involving human users, in particular storyboarding. In the case of non-human system
interfaces, the prototype merely emulates the data and controls required by the connected system.

Software functional prototypes are smaller functional component of a system, exhibiting
representative functionality in order to confirm the completeness and/or the correct behaviour
of the component when integrated with the rest of the system. The functional prototype may
use non representative input and output internally, and mimick the behaviour expected by other
software components of the system. Software functional prototypes are usually more restricted in
terms of the chosen implementation language, due to the problems of interfacing to other existing
target software components.

22 UNCLASSIFIED

;————__M.

UNCLASSIFIED ERL-0526-TR

7 Future Trends in Prototyping

The advent of Computer Assisted System/Software Engineering (CASE) has already had a
great impact on the software system producticn industry. Many companies now employ many
and various CASE tools to automate the software system development life cycle. As the CASE
industry matures and vendors tools become more integrated and more sophisticated, the ability to
automatically generate prototypes throughout all stages of the life cycle will be possible.

Already tools exist to animate and prototype at the requirements specification level. Statemate
from i-Logix Incorporated[28], provides facilities to capture and analyse a system specification,
based on Harel’s [29] statecharts, with facilities to carry out animated execution and simulation of
the described system. In addition Statemate provides an automatic translation of the requirements
specification into the Ada language, which provides for prototyping at the specification level.

Many CASE tools are available that allow graphical representation of the system design with
the ability to generate the skeleton code for the system. AdaGraph which uses the Pamela notation
and Cadre Technologies Teamwork/Ada which uses Buhr notation are examples of commercially
available tools. The Carleton Embedded Design Environment (CAEDE)[30], produced as a research
project at Carleton University, provides the generation of skeleton Ada code from Buhr notation,
plus facilities to analyse the design for deadlock and race conditions.

Wh'le many tools are available today, each tool covers a small part of the develcpment life
cycle and is normally stand-alone. The tool manufacturers have identified the need to support
prototyping but do not address the life cycle as a whole. Consequently the use of these tools offers
no means of traceability between each phase of the life cycle that each tool supports. Given the
desire for prototypes to become bi-products of an evolutionary system development process, an
integrated toolset is required which covers all phases of the life cycle and is capable of automatic
gener-tion of prototype systems. Individual tools make evolutionary development very difficult.
While they automate the production of a prototype from a graphical notation at a particular phase
of the life cycle, a great deal of manual effort is necessary to maintain consistency of descriptions
across tools when using an iterative evolutionary approach. The lack of communication and
therefore traceability between the different tools would make the process very error prone.

With the emerging standardisation of CASE data interchange formats allowing the possibility
for totally integrated toolsets, and the realisation of the importance of prototyping as an integral
part of the software system development life cycle, the future will certainly bring a host of tools
which will provide for the automated production or evolutionary prototypes.

UNCLASSIFIED 23

——————————————SSE S

ERL-0526-TR

UNCLASSIFIED

THIS PAGE INTENTIONALLY LEFT BLANK

24

UNCLASSIFIED

UNCLASSIFIED ERL-0526-TR

8 Discussion

A survey of the literature on the subject of prototyping has revealed a multitude of papers
discussing the topic. The interpretation and use of the terminology is in general extremely diverse
and while a great number of papers extol the virtues of prototyping, few offer practical experience
with the technique for the development of real-time systems. In addition little attention is given to
the problem of incompatibility of prototyping and the traditional software system development life
cycle. In general, the term “prototype’ is used to cover a wide range of definitions, with the most
frequent use of the terminology occurring in the phrase ‘throw away prototype’ and ‘evolutionary
prototype’ or derivations of these phrases.

The term ‘throw away prototype’ is repeatedly used to describe the model produced to assist
requirements analysis and human computer interface capture. On a few occasions a ‘throw away
prototype’ is defined as such, due to its relatively small cost of development compared to the
overall system cost (the guide usually being approximately 10%). References to the terminology
are repeatedly used to discuss prototyping early in the software system development life cycle
but little reference is given to the technique being used to assist other phases of the life cycle
where it is equally appropriate.

The term ‘evolutionary prototype’ is often wrongly used and interchanged with the term
‘incremental development’. Davis [12] provides a definition of both evolutionary prototyping
and incremental development which highlights the distinct difference in their meaning. The
former implies a lack of knowledge of the requirement and the need for experimentation with
an operational system in order to learn, whereas the latter implies implementation of a known
requirement in subsets of increasing capability. The advocates of ‘evolutionary prototyping’
generally offer little or no advice regarding the quality assurance aspects of the software system
being developed, neither do they propose a life cycle model or method for controlling the process.
The technique is often proposed without any suggestion as to how key system properties, which
may have been sacrificed to speed up the generation of the prototypes, may be later incorporated.

This paper presents prototyping as a necessary technique that has applicability throughout
many phases of the real-time software system development life cycle. The key texts upon which
the paper is based were chosen because of their coverage of the software system life cycle as a
whole and their practical applicability to the production environment. While many papers were
found which addressed the subject of prototyping, few discussed the subject in this wider context.
A great deal of research has been directed towards front end prototyping, to assist requirements
analysis and requirements specification, but very little attention has been given to the role of
prototyping throughout the remainder of the life cycle.

Given that the necessary infra-structure to support a prototyping approach is now available,
a commitment is required from both customer and supplier in acknowledging the significant
advantages to be gained from adopting such an approach. The US congressional sub-committee’s
staff report, ‘Bugs In The Program’(31], published in September 1989, recommends a new basis
for software system procurement decisions. One of the key recommendations of the report is the
adoption of both a prototyping approach and the use of an extended spiral model for software
system development. This is in recognition of the fact that the document driven, specify-then-build
approach, has caused so many of the US Defense Department’s software problems.

UNCLASSIFIED 25

—————————

ERL-0526-TR

UNCLASSIFIED

THIS PAGE INTENTIONALLY LEFT BLANK

26

UNCLASSIFIED

M

UNCLASSIFIED ERL-0526~-TR

9 Conclusion

Prototyping is a valuable technique which can be used to augment the software system
development life cycle and assist in the production of higher quality systems. Adoption of the
technique requires a development life cycle model capable of supporting the iterative nature of the
prototyping process and a method for managing the exercise.

The current state of the art, with respect to software system development environments,
restricts prototyping to the category defined as ‘throw away’. Throw away prototypes have
applicability throughout many phases of the software system development life cycle. If throw
away prototyping is to be seriously adopted and integrated into the software system development
life cycle, the process must be fully defined and understood. The classification proposed by
Mayhew and Dearnley (5], upon which this paper is based, is recommended as the basis for the
definition of throw away prototypes.

Prototyping requires a flexible and supportive software system development life cycle model,
and in order to attract both management and quality organisation approval, the process must have
a defined method. The combined spirzl model [16] and change classification method [17] described
in this paper provide the necessary framework and controls to satisfy both the management and
quality issues. Within this framework and with these controls, throw away prototyping can become
an integral component of the software system development life cycle.

Although evolutionary prototyping is not yet possible with current technology, a hybrid
combination of ‘throw away’ prototyping’ and ‘incremental development’ used within the
framework of the spiral model, offers an approach which is far superior to the traditional waterfall
model, where applicable. The waterfall model still offers an adequate approach for the development
of systems which are fully understood, and therefore by definition, require no prototyping.

UNCLASSIFIED 27

—————————————— S

ERL-0526-TR UNCLASSIFIED

THIS PAGE INTENTIONALLY LEFT BLANK

28 UNCLASSIFIED

UNCLASSIFIED ERL-0526-TR

References

[1] Gregory S.T., “On Prototypes vs. Mockups”, ACM SIGSOFT Software Engineering Notes, vol. 9,
no. 5, p. 13, 1984.
[2] Weiser M., “Scale Models and Rapid Prototyping”, ACM SIGSOFT Software Engineering Notes,
vol. 7, no. 5, pp. 181-185, 1982.
[3] Floyd C, “A Systematic Look at Prototyping”, in Approaches to Prototyping (Budde R,
Kuhlenkamp K. et al, ed.), Springer-Verlag, 1984.
[4] Law D., “Prototyping: A State of the Art Report”, tech. rep., NCC, 1985.
[5] Mayhew P.J. and Dearnley P.A., “An Alternative Prototype Classification”, The Computer
Journal, vol. 30, no. 6, pp. 481-484, 1987.
[6) Sommerville 1., Software Engineering, Third Edition, ch. Requirements Validation and Prototyping.
Addison-Wesley, 1989.
[7)} Pressman R.S. Software Engineering, A Practitioner's Approach, Second Edition, ch. Software
Prototyping. McGraw-Hill, 1987.
[8] Boehm B.W., “Some Steps Towards Formal and Automated Aids to Software Requirements
Analysis and Design”, IFIP, 1974. Amsterdam: North-Holland.
[9] Gomaa H., “The Impact of Rapid Prototyping on Specifying User Requirements”, ACM
SIGSOFT Software Engineering Notes, vol. 8, no. 2, pp. 17-28, 1983.
[10] Brooks F.P., The Mythical Man-Month. Addison-Wesley, 1975.
[11] Carey T.T. and Mason R.E.A. “Information Systems Prototyping: Techniques, Tools and
Methodologies”, INFOR - The Canadian Journal of Operational Research and Information Processing,
vol. 21, no. 3, 1983.
(12] Davis A.M., “A Strategy for Comparing Alternative Software Development Life Cycle Models”,
IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1453-1461, 1988.
[13] Royce W.W., “Managing the Development of Large Software Systems: Concepts and
Techniques”, in Proceedings of WESCON, 1976.
[14) Boehm B.W., “Software Engineering”, IEEE Transactions on Computers, vol. C-25, no. 12,
pp. 1226-1241, 1976.
[15] Agresti W.W., New Paradigms for Software Development. IEEE Computer Society Press/North-
Holland, 1986.
[16) Boehm B.W., “A Spiral Model of Software Development and Enhancement”, ACM SIGSOFT
Software Engineering Notes, vol. 11, no. 8, pp. 14-24, 1986.
(17] Mayhew P.J., Worsley C.J. and Dearnley P.A., “Control of Software Prototyping Process: Change
Classification Approach”, Information and Software Technology, vol. 31, no. 2, pp. 59-66, 1989.
(18] Hartson H.R. and Hix D., “Human-Computer Interface Development: Concepts and Systems
for its Management”, ACM Computing Surveys, vol. 21, no. 1, 1984.
[19] Bass L. and Coutaz J., “Human-Machine Interaction, Considerations for Interactive Software”,
Tech. Rep. CMU/SEI-89-TR-4, Software Engineering Institute, Carnegie-Mellon University,
1989.
[20) Dickerson K.R., Benton R.H. and Atyeo M.A., “Rapid Prototyping Tools and Techniques”,
British Telecom Technical Journal, vol. 6, no. 4, pp. 65-68, 1988.
(21) Overmyer S.P., “Survey of Rapid Prototyping Tools for User-Computer Interface Design”, Tech.
Rep. CTC-TN-89-001, Contel Technology Centre, Contel Corporation, 1989.

UNCLASSIFIED 29

———————_

ERL-0526-TR UNCLASSIFIED

(22] Andriole S.J., “Storyboard Prototyping for Requirements Verification”, Large Scale Systems, Y
vol. 12, pp. 231-247, 1987.

(23] Freeman T.G., “Experience with Open Dialogue”, in Proceedings of the Fourth Australian Software
Engineering Conference, pp. 11-16, 1989.

(24] Bass L., Hardy E. et al, “Introduction to the Serpent User Interface Management System”, Tech.
Rep. CMU/SEI-88-TR-5, Software Engineering Institute, Carnegie-Mellon University, 1988. ®

(25] Bass L., Hardy E et al, “The Serpent Runtime Architecture and Dialogue Model”, Tech. Rep.
CMU/SEI-88-TR-6, Software Engineering Institute, Carnegie-Mellon University, 1988.

[26] Scheifler R.W. and Gettys J., “The X Window System”, ACM Transactions on Graphics, vol. 5,
no. 2, pp- 79-109, 1986.

[27) Information Research Associates, Performance Analyst’s Workbench System, Introduction and o
Technical Summary, November 1986.

[28] Harel D., Lachover H. et al, “Statemate: A Working Environment for the Development of
Complex Reactive Systems”, in Proceedings of the Tenth International Conference on Software
Engineering, pp. 396—406, 1988.

[29] Harel D., “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer ®
Programming, vol. 8, pp. 231-274, 1987.

[30] Buhr RJ.A, Karam G.M. et al, “Software CAD: A Revolutionary Approach”, IEEE Transactions
on Software Engineering, vol. 15, no. 3, pp. 235-249, 1989.

(31] Subcommittee on Investigations and Oversight, Committee On Science, Space, and Technology,
U.S. House of Representatives, “Bugs In The Program”, September 1989. ®

30 UNCLASSIFIED

———M’

UNCLASSIFIED ERL-0526-TR
DISTRIBUTION COPY NO.
DEPARTMENT OF DEFENCE
Defence Science and Technology Organisation
Chief Defence Scientist)
First Assistant Secretary Science Policy) 1
Director General Science and Technology Programs)
Counsellor, Defence Science, London Ctr Sheet Only
Counsellor, Defence Science, Washington Ctr Sheet Only
Defence Science Representative, Bangkok Ctr Sheet Only
Scientific Adviser, Defence Research Centre, Kuala Lumpur Ctr Sheet Only
Electronics Research Laboratory
Director, Electronics Research Laboratory 2
Chief, Information Technology Division 3
Chief, Communications Division 4
Chief, Electronic Warfare Division 5
Research Leader, Information Systems 6
Research Leader, Information Processing 7
Head, Software Engineering Group 8-9
Head, Information Systems Research Group 10
Head, ‘I'rusted Computer Systems Group 11
Publicity and Component Support Officer, Information
Technology Division 12
Aeronautical Research Laboratory
Director, Aeronautical Research Laboratory 13
Chief, Aircraft Systems Division 14
Marterials Research Laboratory
Director, Materials Research Laboratory 15
Surveillance Research Laboratory
Director, Surveillance Research Laboratory 16
Weapons Systems Research Laboratory
Director, Weapons Systems Research Laboratory 17
Head, Combat Systems Integration Group 18
Navy Office
Naval Scientific Adviser Cur Sheet Only
Army Office
Scientific Adviser - Army 19
Director General Army Development (NSO), Russell Offices
for ABCA Standardisation Officers
UK ABCA Representative 20
US ABCA Representative 21
Canada ABCA Representative 22
New Zealand ABCA Representative 23
Air Office
Air Force Scientific Adviser 24
Joint Intelligence Organisation (DSTI) 25
UNCLASSIFIED 31

e ———— S

UNCLASSIFIED ERL-0526-TR
Director of Deparmmental Publications 26
Libraries and Information Services
Librarian, Technical Reports Centre, Defence Central Library
Campbell Park 27
Document Exchange Centre, Defence Information Services for:
Microfiche copying (then destruction) 28
United Kingdom, Defence Research Information Centre 29 - 30
United States,Defence Technical Information Centre 31-32
Canada, Director, Scientific Information Services 33
New Zealand, Ministry of Defence 34
National Library of Australia 35
Main Library, Defence Science and Technology
Organisation, Salisbury 36 - 37
Library, Materials Research Laboratory 38
Librarian, Defence Signals Directorate 39
Australian Defence Force Academy Library 40
British Library Document Supply Centre (UK) 41
Office of Defence Production
Chief of Defence Production 42
Defence Industry and Materiel Policy Division
FASDIMP 43
Academic Institutions
University of Adelaide, Dr Chris Marlin, Dept of Computer Science 44
University of Queensland, Prof A.M. Lister, Dept of Computer Science 45
Royal Melbourne Institute of Technology, Mr L. Jackson, Centre for
Advanced Telecommunications Technology 46
Australian National University, Prof R.B. Stanton, Dept of
Computer Science 47
Institution of Electrical Engineers (UK) 48
TTCP Distribution (c/- Head, Software Engineering Group) 49 - 55
Author (c/- Head, Software Engineering Group) 56 - 57
Spares 58-62

32

UNCLASSIFIED

DOCUMENT CONTROL DATA SHEET

Security classification of this page : UNCLASSIFIED B
1 'DOCUMENT NUMBERS ! 2 [SECURITY CLASSIFICATION
l 7 a. Complete
i AR Document : Unclassified
- Number : AR-006-430 I b. Title in
— — ! Isolation : Unclassified

‘ Series
i Number : ERL-0526-TR

| ¢. Summary in
| lIsolation : Unclassified

3 "DOWNGRADING / DELIMITING INSTRUCTIONS

[
!
l Other
| Numbers :

L

4 "TmLE !

‘ RAPIDPROTOTYPING: FORWANTOFBETTER WORDS

6 "'DOCUMENT DATE |
| September 1990

S "PERSONAL AUTHOR (S)

Stephen P. Jones

7 7.1 TOTAL NUMBER

|
|
{
O OF PAGES 39
2 NoweeR oF .
. REFERENCES .
| L
8 3.1 CORPORATE AUTHOR () : 9 "REFERENCE NUMBERS T |
‘f ‘ a. Task : DST 89/047
Electronics Research Laboratory b
! ' b. Sponsoring Agency :
. 8.2 DOCUMENT SERIES and NUMBER | 10 "cosT cobe R
Technical Report P 293 AA 254

0526

12 " COMPUTER PROGRAM (S)

n ,AIIWPIEIINT (Publishing organisation)
T (Title (s) and language (s))

Defence Science and Technology
. Organisation Salisbury

S S

T

13 "RELEASE LIMITATIONS (of the document) |

|
!
i

Approved for Public Release

Security classification of this page : UNCLASSIFIED !

M

Security classification of this page : [UNCLASSIFIED L
14 "ANNOUNCEMENT LIMITATIONS (of the information on these pages) J
L
No Limitation
15 “DESCRIPTORS - 16 "cosaTi cobEs *
- a. BEJC Thesaurus 1
Terms Rapid Prototyping
Software Engineering } 1205
Systems Engineering
o
" b. Non - Thesaurus
Terms
o

17 "SUMMARY OR ABSTRACT

(if this is security classified, the announcement of this report will be similarly classified)

Rapid prototyping is widely promoted as being an effective technique to assist the development

of complex systems. While the phrase is commonly used and discussed within the software o
system development community, the interpretation is somewhat diverse and the technique

itself has not been widely adopted in practice. This paper reviews the recent literature on the

subject of 'rapid prototyping’ and in highlighting key texts, aims to provide a definition of the

terminology and tries to put prototyping into context as a necessary and integral component of

the software system development life cycle. The paper discusses the incompatibility of

prototyping and the traditional life cycle model and proposes an alternative life cycle model e
which incorporates prototyping as an integral activity. '

Security classification of this page : UNCLASSIFIED

M

